Plant pests and disease detection using optical sensors / Daljinsko zaznavanje rastlinskih bolezni in škodljivcev
DOI:
https://doi.org/10.3986/fbg0057Abstract
ABSTRACT
Traditional agricultural plant pest and disease management practices are based on visible characteristics and require that plants are checked individually, making these practices time consuming and therefore costly. Plant pests and diseases also often exhibit a heterogeneous distribution, making detection more difficult. Remote sensing methods enable comparatively accurate detection of pests and diseases over larger areas. Furthermore, because remote sensing sensors utilize light outside the human visible spectrum, presymptomatic detection becomes possible, thus facilitating timely, appropriate and spatially accurate management practices. Because remote sensing systems generate large amount of data, novel data analysis methods, such as machine learning, were introduced to plant protection. While pest and disease detection is possible using individual sensors, best results can be obtained by combining different sensors, utilizing different spectral ranges or physiological responses to light. A large amount of data and information has been generated in the past, but this research has mostly been focused on individual pathogens. Future research will have to focus on combined infections or infestations, and include abiotic stressors as well.
Key words: Remote sensing, plant protection, hyperspectral, multispectral, thermal, fluorescence, precision agriculture
IZVLEČEK
Velikokrat tradicionalni pristopi varstva rastlin pred rastlinskimi boleznimi in škodljivci temeljijo na vidnih simptomih, ki vključuje redno pregledovanje posameznih rastlin. Postopki so zato lahko dolgotrajni in s tem dragi. Bolezni in škodljivci imajo v prostoru pogosto heterogeno razporeditev, kar otežuje njihovo odkrivanje. Metode daljinskega zaznavanja omogočajo razmeroma natančno odkrivanje škodljivcev in bolezni na večjih območjih. Ker uporabljajo senzorji daljinskega zaznavanja tudi svetlobo izven nam vidnega spektra, je možno tudi zgodnje odkrivanje, t.j. odkrivanje pred razvojem vidnih znakov bolezni. To omogoča pravočasno, ustrezno in prostorsko natančno upravljanje z boleznimi in škodljivci. Sistemi daljinskega zaznavanja ustvarjajo velike količine podatkov, zato so bile v varstvo rastlin uvedene sodobne metode za analizo podatkov, na primer strojno učenje. Čeprav je možno zaznava bolezni in škodljivcev z uporabo posameznih senzorjev, lahko dosežemo najboljše rezultate z združevanjem različnih senzorjev, torej z uporabo različnih spektralnih območij ali fizioloških odzivov na svetlobo. Dosedanje raziskave so bile osredotočene na posamezne škodljivce in bolezni. Prihodnje raziskave se bodo morale osredotočiti na kombinirane okužbe ter vključevati tudi abiotske stresorje.
Ključne besede: daljinsko zaznavanje, varstvo rastlin, hiperspekter, multispekter, toplotno slikanje, fluorescenca, precizno kmetijstvo
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).