PLANT GROWTH PROMOTING MICROORGANISMS: A PROMISING TOOL FOR IMPROVING FOREST TREE SEEDLINGS SURVIVAL (A REVIEW)

RASTLINAM KORISTNI MIKROORGANIZMI: OBETAVNO ORODJE ZA IZBOLJŠANJE PREŽIVETJA GOZDNIH SADIK (PREGLEDNI ČLANEK)

Tina UNUK NAHBERGER¹

http://dx.doi.org/10.3986/fbg0115

ABSTRACT

Severe drought events and increasingly frequent large-scale forest disturbances can lead to a significant and irreversible decline in the natural regeneration of various forest tree species. Extensive research is being carried out to develop strategies to help plants cope with the increasing stress. However, most of these technologies are costly and time-consuming, so the application of plant growth-promoting microorganisms (PGPMs) appears to be an easy-to-use and efficient method to alleviate abiotic and biotic stress in plants. PGPM inoculants are a sustainable alternative strategy to not only alleviate stress through various mechanisms, but also to promote plant growth and development. Previous studies have revealed a wide range of PGPM genera that colonise plant roots and enhance the ability of plants to cope with abiotic and biotic stress in agriculture. However, records on the potential benefits of PGPMs in forest seedlings are still sparse, with only a few reports and mostly isolated strains from the genera Pinus, Quercus, Abies and Picea. This review addresses the current knowledge on plant growth-promoting mechanisms and provides an overview of isolated microorganisms with proven plant growth-promoting mechanisms from different forest tree species.

 $\it Keywords$: plant growth promoting microorganisms, reforestation, nurseries, forest tree seedling survival

IZVLEČEK

Pogoste hude suše in vse večje obsežne motnje v gozdovih ogrožajo naravno regeneracijo številnih drevesnih vrst ter lahko povzročijo pomemben in nepovraten upad gozdnih ekosistemov. V zadnjih letih potekajo številne raziskave za razvoj strategij, ki bi povečale odpornost rastlin na tovrstne obremenitve, vendar so obstoječe tehnologije pogosto drage in časovno zahtevne. Uporaba rastlinam koristnih mikroorganizmov (PGPMs) se zato kaže kot obetavna, trajnostna in stroškovno učinkovita alternativa za zmanjševanje abiotskih in biotskih stresov ter za spodbujanje rasti in razvoja rastlin. PGPMs inokulanti delujejo preko različnih mehanizmov, vključno z mobilizacijo hranil, sintezo fitohormonov, uravnavanjem stresnih hormonov in zatiranjem patogenov, s čimer krepijo rast in odpornost rastlin. Čeprav so številni rodovi PGPMs dobro dokumentirani v kmetijstvu, so podatki o njihovih učinkih pri gozdnih sadikah še vedno omejeni, največkrat na posamezne seve, povezane z rodovi Pinus, Quercus, Abies in Picea. Ta pregled povzema trenutno znanje o mehanizmih delovanja PGPMs ter predstavlja pregled izoliranih mikroorganizmov z dokazanimi rast spodbujevalnimi učinki pri različnih gozdnih drevesnih vrstah. Razširitev uporabe PGPMs v gozdarstvu bi lahko pomembno prispevala k večjemu preživetju sadik, izboljšani regeneraciji gozdov ter krepitvi odpornosti gozdnih ekosistemov v pogojih podnebnih sprememb.

Ključne besede: rastlinam koristni mikroorganizmi, pogozdovanje, drevesničarstvo, preživetje sadik gozdnega drevja

¹ Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, tina.unuk@gozdis.si

INTRODUCTION

Human pressure continues to damage ecosystems, as deforestation rates from 2015 to 2020 reached an estimated 10 million hectares per year, resulting in the loss of 420 million hectares of forest since 1990 due to landuse changes. These trends, coupled with global concerns over climate change and biodiversity loss, emphasize the critical role of forest restoration (Stanturf et al. 2014, Stanturf et al. 2019), which is essential to slow global warming (IPCC 2014). Restoration of forest sites relies on the successful establishment of seedlings, which has

been challenging, particularly in recent years, partly because of the inadequacy of practical methodologies and the lack of empirical evidence to support best practices (Chazdon & Guariguata 2018). Harsher microsite characteristics in face of global warming, e.g. longer drought periods or longer periods of water scarcity and osmotic stress, have a major impact on sapling survival and growth (Sanchez-Cruz et al. 2020, Ahanger et al. 2012). Survival rate is a common metric of early success (Le et al. 2012) and maximising survival of planted sap-

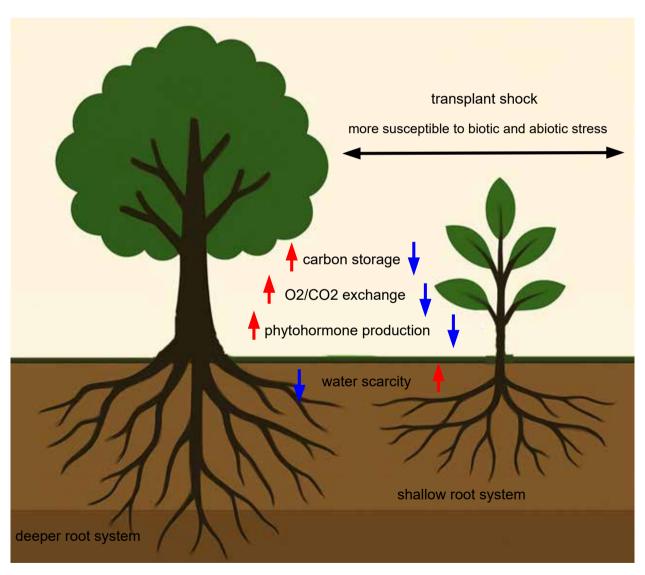


Figure 1: Adult tree versus sapling physiological characteristics, that make saplings more susceptible to different biotic and/or abiotic stressors.

Slika 1: Fiziološke značilnosti odraslega drevesa v primerjavi s sadiko, zaradi katerih so slednje občutljivejše na različne biotske in/ali abiotske stresne dejavnike.

lings is essential for the economic and environmental success of reforestation plantings. However, most reforestation studies and practices accept that a proportion of planted saplings will succumb to transplant shock (CLOSE et al. 2005). Moreover, compared to adult trees, saplings are more susceptible to biotic and abiotic stresses, especially to those related with global warming. Compared to adult trees, sapling's root system is shallow, with growth restricted to the upper soil layers, which makes them more susceptible to drainage by evapotranspiration, during dry periods, when water uptake is restricted (Goke & Martin 2022; Mediavilla & ESCUDERO 2003). Also, sapling's carbon reserves are insufficient to sustain physiological functions under stress periods (Goke & Martin 2022). To prevent water losses, sapling stomata are closed early, which results in a lower O₂/CO₂ exchange, carbon starvation (Domingo et al. 2023; HARTMANN et al. 2022) as well as in accumulation of harmful reactive oxygen species (FADIJI et al.2022; ZHANG et al. 2023). Thereby, it was pointed out that already nursery stage of saplings needs critical care to ensure their long-term productivity (Ou et al. 2023) (Figure 1).

One of the ways to solve the problem of obtaining high-quality forest seedlings for reforestation and to enhance plant survival during the adaptation phase, is the application of microbial technology into the technology of forest seedlings cultivation (Su et al. 2017, CASTILLO-ARGUERO et al. 2014). The application of plant growth-promoting microorganisms (PGPMs) seems to provide an easy to apply, and efficient way of alleviating biotic and abiotic stresses in plants (HANA-KA et al. 2021). PGPMs is a group of free-living microorganisms in the rhizosphere soil, rhizoplane, phyllosphere or endosphere, and can promote plant growth or reduce biotic or abiotic stresses through a wide range of functional traits (FADIJI et al. 2022; CAO et al. 2023; COMPANT et al. 2010) and are at the same time ecofriendly to soil (Khatoon et al. 2022). PGPMs can be classified into bacterial and fungal types, among which bacterial PGPMs mainly include species from genera Bacillus, Pseudomonas, Flavobacteria, Azospirillum, Azotobacter, Rhizobium, Actinomycetes, Burkholderia, Agrobacterium, Enterobacter, Klebsiella, Serratia and so on (Khatoon et al. 2022). Among fungal PGPMs most common are Trichoderma, Penicillium, Rhodotorula, several arbuscular mycorrhizal species and etc. (HERMOSA et al. 2012; HOSSAIN et al. 2008; PATHAK et al. 2017; SILAMBARASAN et al. 2019). However, up-to date bacterial strains mechanisms have been widely studied and used, especially in agriculture, where there is still a lack of knowledge about the fungal mechanisms and their potential in plant growth promotion.

PGPMS MECHANISMS IN PLANT GROWTH PROMOTION AND ALLEVIATING ABIOTIC/BIOTIC STRESSES

PGPMs promotes plant growth through different mode of action, which can be summarized as 1) siderophores biosynthesis, 2) providing plant by phytohormones such as 3-indole acetic acid, gibberellic acids, and cytokinins, 4) increasing the bioavailability of insoluble nutrients due to mobilization, 4) mitigation of the stress effect on plant and elevate the plant tolerance against stress conditions e.g. drought, salinity, and temperature, and secretion of 1- aminocyclopropane-1-caroxylate deaminase (ACCD) that depress the ethylene level in the plant body and 5) production of antagonistic compounds like hydrogen cyanide, and antibiotics that protect the plant against pathogens and diseases (EL-MARAGHY et al. 2021)

Siderophores produced by various microorganisms are beneficial for plants because they can increase plant growth by increasing the availability of iron in soil (Santana et al. 2016). In addition, siderophores can also act as biocontrol agents, as can inhibit the growth of pathogens by binding to Fe³⁺ which causes the pathogen

to lack Fe³⁺ (NIEHUS et al. 2017). Siderophores are produced from a wide range of microorganisms including bacteria and fungi and is considered as one of the major approaches of PGPMs that is implicated in the biological control of plant diseases (LI et al. 2016).

Plant physiologic functions, such as growth, differentiation, development, and stomata movement, are also regulated by phytohormones. Plants inoculation with PGPMs can also modulate plant hormone synthesis to promote plant tolerance to different stresses. PGPMs produce several external plant growth regulators such as auxin or indole-acetic acid (IAA), cytokinin (CK), ethylene (ET), abscisic acid (ABA), salicylic acid (SA), and jasmone acid (JA) (KOTIYAL & SHARMA 2024). IAA can be produced by more than 80% of rhizosphere-associated microorganisms, including bacteria and fungi IAA is the main active natural form of auxin involved directly in plant development (AGAKE at al. 2022) and is involved in the regulation of different biological processes connected to plant

growth, including seed germination; cell division, elongation, and differentiation; gene expression; photosynthesis initiation and proliferation of lateral and adventitious roots. Plant roots excrete L-tryptophan, a major precursor for IAA (NAJAFI ZILAIE et al. 2022), which is in the rhizosphere convert to IAA, by PGPMs and is further taken up by the plants. PGPMs can also produce their own IAA, which is assimilated by plant cells and activates the auxin signal transduction pathway in plants, which stimulates plant cell proliferation (LI et al. 2020). Microorganism's IAA induce different

responses in plants depending on the physiological concentration. For example, modest levels of IAA produced by PGPMs can boost primary root elongation and plant growth, whereas high levels of exogenous IAA can inhibit primary root elongation and enhance lateral and root hair development. However, the synthesis of large amounts of IAA by PGPMs was found to impede rather than enhance root development (Kotiyal & Sharma 2024).

ABA is a key plant growth regulator that is involved in plant development, plant defence and abiotic stress

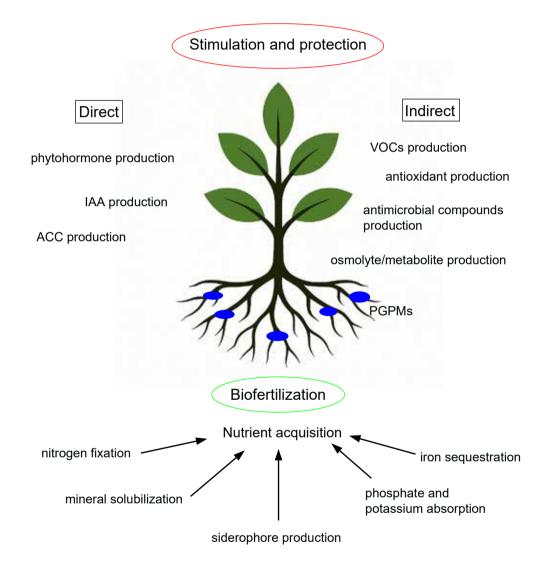


Figure 2: Various roles of beneficial microorganism in plant growth promotion. These mechanisms can be divided in two broad categories: biofertilization, and stimulation and protection, which can be further divided in direct or indirect mechanisms. PGPMs: Plant growth promoting microorganisms.

Slika 2: Različni mehanizmi rastlinam koristnih mikroorganizmov pri spodbujanju rasti rastlin. Mehanizme lahko razdelimo v dve glavni kategoriji: biofertilizacija ter stimulacija in zaščita, ki se lahko nadalje delita na neposredne ali posredne mehanizme. PGPMs: rastlinam koristni mikroorganizmi. responses. ABA-dependent signalling pathways are important for stress-responsive gene expression under drought, salt, and osmotic stress (Cutler et al. 2010; Li et al. 2015). Furthermore, ABA also maintains the hydraulic conductivity of plant roots and shoots, allowing them to better uptake soil moisture and sustain cell turgor potential. Under drought stress, ABA affects different aspects of plant growth, such as inhibiting leaf surface area expansion, reducing photosynthesis, decreasing lateral root initiation, enhancing the primary root length and density, and decreasing the shoot-to-root ratio to improve the uptake of water and nutrient from soil. Several PGPMs species are known to induce drought stress tolerance through the ABA pathway, alleviating drought stress effects. Increased ABA content in inoculated plants, can reduce leaf transpiration and improved osmotic stress tolerance in the plants (BRESson et al. 2013).

One of the important plant hormones which is largely known for its role in systemic acquired resistance (SAR) and induced systemic resistance (ISR) is SA. It functions as signalling molecules to activate genes and secondary metabolites responsive to stress. Several SA producing beneficial microorganisms can colonize roots and cause them to be more resistant to plant pathogens and environmental stress (KOTIYAL & SHARMA 2024).

In addition to being a plant growth regulator, ET also acts as a growth inhibitor or a stress hormone under adverse conditions such as salinity, heavy metal toxicity, and drought stress. Under stress conditions, the endogenous amounts of ET are significantly increased which may reach levels that adversely limit plant development. Plants enhance the synthesis of endogenous ET in response to stress stimuli, resulting in reduced root and

shoot development, and plant growth retardation (SA-LEEM et al. 2007)). Some PGPMs strains have been shown to produce the enzyme 1-aminocyclopropane-1-carboxylase (ACC) deaminase, which reduces endogenous ET levels in plants and subsequently, increase stressed plants' chances of surviving (DEL CARMEN OROZCO-MOSQUEDA et al. 2020). Thus, ACC deaminase producing PGPMs improve multiple physiological and biochemical features in plants, including root and shoot growth, mineral nutrients uptake, membrane stability, photosynthetic pigment production, rhizobial nodule formation, and mycorrhizal colonization in various crops (LI et al. 2020). Therefore, PGPMs that produce ACC deaminase are involved in the direct negative regulation of endogenous ET levels in plants and in stimulating plant growth (KOTIYAL & SHARMA 2024).

Strong evidence published in the literature suggests that the beneficial effect of some PGPMs are also mediated by the release of volatile organic compounds (VOCs) that modify plant and root growth, both directly and indirectly (POVEDA 2021). VOCs are classified into small and heavier categories. Small VOCs include ethanol, and methanol, while heavier VOCs are compounds such as terpenes, methyl jasmonate, and methyl salicylate. The emission rates of volatile compounds are generally associated with the severity of stress. Stressinduced VOCs act as priming signalling agents and have been implicated in systemic defence responses and in improving plant growth. Several PGPMs strains, including bacterial and fungal, produce distinct VOCs that have a direct effect on plant development and indirectly control interactions between plants and other microorganisms. Microbial VOCs may also promote plant tolerance to different environmental stressors, primarily biotic stressors (CHIEB & GACHOMO 2023).

WHAT ABOUT THE USE OF PGPMS IN FORESTRY?

Our knowledge about PGPMs in forest ecosystems, particularly boreal and temperate forests, is still elementary (Puri et al. 2020). The potential of PGPMs related with forest has been less extensively studied, and the number of related PGPMs reported is also very limited. The application of PGPMs in silviculture and forest seedlings production is not a common practice (São José et al. 2019), however there is an increasing interest in the use of beneficial microorganisms as inoculants for nursery tree seedlings due to the repeated demonstrations of agricultural and horticultural plant growth stimulation by PGPMs, and the fact that inoculation of forest seedlings with PGPMs prior to outplanting is inexpensive, envi-

ronmentally friendly, and easily applied in nursery treatments. The use of PGPMs technology can produce more vigorous forest plants, and therefore, could increase seedlings survival when outplanting in fields for reforestation purposes (Garcia et al. 2004).

Although limited, there are records of plant growth enhancement by PGPMs, mostly in commercially interesting tree genera, such as *Pinus*, *Quercus*, *Picea*, *Populus*, however up-to date mainly bacterial strains were used. Records about potentional plant growth promotion by PGPMs in other, important forest tree species, such as *Fagus*, *Abies*, *Larix*, etc. are almost nil. Moreover, most of the studies focusing on microorganisms

with plant growth promotion potential in forestry, are based on research of bacteria and rhizobacteria, while the potential of fungi associated with different forest tree species from different environments is much underexplored. Despite the general known that different mycorrhizal fungi help forest tree species with improving water and nutrient uptake, there are almost no research, where fugal strains associated with forest tree species would be tested for plant growth promotion potential *in vivo* and in greenhouses. In Table 1 records of PGPMs with confirmed plant growth promotion from different forest tree species were gathered.

Table 1: List of PGPMs strains suggested being able to promote growth, mitigate abiotic and/or biotic stresses and their mechanisms. Only PGPMs strains isolated from the forest tree species are included.

Tabela 1: Seznam sevov PGPM z domnevno sposobnostjo spodbujanja rasti ter blažitvijo abiotskih in/ali biotskih stresnih dejavnikov ter njihovi mehanizmi delovanja. V tabelo so vključeni le tisti sevi PGPM, ki so bili izolirani iz gozdnih drevesnih vrst.

PGP bacterial genus	Tree species	PGPMs mechanisms	References
Enterobacter	Pinus	IAAs production, phosphate solubilization, bioinucikant	SANCHEZ-CRUZ et al. 2020, GARCIA et al. 2004
	Quercus	IAA production, iron mobilization, stem root growth promotion	GARCIA et al. 2004
Arthrobacter	Juglans	Protease production, antibiotic production	GHORBANI & HARIGHI 2017
Roseomonas	Juglans	Antibiotic production	Ghorbani & Harighi 2017
Streptomyces	Juglans	Nitrogen fixation activity, lipase production, antibiotic production	Ghorbani & Harighi 2017
	Pinus	IAA production, siderophore production, phosphate solubilization, chitinase activity	Flores-Nunez et al., 2018
Pseudomonas	Juglans	Phosphate solubilization, nitrogen fixation activity, protease production, hydrogen cyanide production, lipase production, antibiotic production	GHORBANI & HARIGHI 2017
	Pinus	IAA production, siderophore production, phosphate solubilization,	Song et al., 2021
		IAA production, iron mobilization, stem root growth promotion	GARCIA et al. 2004
		IAA production, Root and shoot growth promotion,	Nazarov et al. 2023
		IAA and siderophore production, phosphate solubilization	Flores-Nunez et al., 2018
	Quercus	IAA production, iron mobilization, stem root growth promotion	GARCIA et al. 2004
		Siderophore production, phosphate solubilizing, hydrogen cyanide production	Reis et al. 2021
		IAA production, GA production, phosphate solubilization, siderophore production, protease production, hydrogen cyanide production, nitrogen fixation activity	Tashi-Oshonei et al. 2017
		Increased proline content, improved photosynthetic leaf content under stress	Heydari et al. 2023
	Populus	IAA production, root and shoot growth promotion,	Nazarov et al. 2023
	Picea	ACC production, siderophore production, phosphate solubilization, IAA production	Magosн et al. 2025

PGP bacterial genus	Tree species	PGPMs mechanisms	References
		Phosphate solubilization, phytate hydrolization, IAA production, ACC activity, cellulase activity.chitinase activity, glucanase activity, protease activity	Puri et al. 2020
Bacillus	Juglans	Siderophore production, nitrogen fixation activity, protease production, lipase production, antibiotic production	GHORBANI & HARIGHI 2017
	Abies	IAA production, seed germination promotion, antioxidative enzyme activity level promotion	GARCIA-LEMOS et al. 2020
	Pinus	IAA production, seed germination promotion, stem and root growth promotion	Moreno-Valencia et al., 2024
		IAA production, siderophore production, phosphate solubilization, chitinase activity	FLORES-NUNEZ et al., 2018
	Quercus	Siderophore production, phosphate solubilizing, hydrogen cyanide production, antifungal activity	REIS et al. 2021
		IAA production, GA production, siderophore production, phosphate solubilization, protease production, protease production	Tashi-Oshonei et al. 2017
	Picea	ACC production, siderophore production, phosphate solubilization, IAA production, N fixation activity	Magosh et al. 2025
Paenibacillus	Abies	IAA production, seed germination promotion, root growth promotion, antioxidative enzyme activity level promotion	GARCIA-LEMOS et al. 2020
	Pinus	IAA production, phosphate solubilization, chitinase activity	FLORES-NUNEZ et al., 2018
Viridibacillus	Pinus	IAA and siderophore production	FLORES-NUNEZ et al., 2018
Serratia	Pinus	IAA production, siderophore production, phosphate solubilization	Song et al. 2021
		IAA production, siderophore production, phosphate solubization, ACC production, seed germination promotion, stem and root growth promotion	Moreno-Valencia et al. 2024
	Quercus	Siderophore production, phosphate solubilizing, hydrogen cyanide production, antifungal activity	REIS et al. 2021
Chryseobacterium	Pinus	IAA production, stem root growth promotion	Lucas-Garcia et al. 2004
	Quercus	IAA production, stem root growth promotion	Lucas-Garcia et al. 2004
Klebsiella	Quercus	Siderophore production, phosphate solubilizing, hydrogen cyanide production, antifungal activity	REIS et al. 2021
Cedecea	Quercus	Siderophore production, phosphate solubilizing, hydrogen cyanide production, antifungal activity	REIS et al. 2021
Rouxiella	Quercus	Siderophore production, phosphate solubilizing, hydrogen cyanide production, antifungal activity	REIS et al. 2021

PGP bacterial genus	Tree species	PGPMs mechanisms	References
Ewingella	Quercus	Siderophore production, phosphate solubilizing, hydrogen cyanide production	Reis et al. 2021
Stenotrophomonas	Quercus	IAA production, GA production, phosphate solubilization, protease production, hydrogen cyanide production	Tashi-Oshonei et al. 2017
Paraburkholderia	Picea	ACC production, siderophore production, phosphate solubilization, IAA production	Magosh et al. 2025
Rhizobium	Picea	ACC production, siderophore production, phosphate solubilization, IAA production	Magosh et al. 2025
Caballeronia	Picea	ACC production, siderophore production, phosphate solubilization, IAA production, N fixation acitivity	Magosh et al. 2025
Paraburkholderia	Picea	ACC production, siderophore production, phosphate solubilization, IAA production, N fixation acitivity	Magosh et al. 2025
Collimonas	Picea	ACC production, siderophore production, phosphate solubilization, IAA production	Magosh et al. 2025
Streptomyces	Picea	ACC production, siderophore production, phosphate solubilization, IAA production, N fixation acitivity	Magosh et al. 2025
	Populus	IAA production	TIAN et al. 2019
Rhodococcus	Picea	ACC production, siderophore production, phosphate solubilization, IAA production, N fixation activity	Magosh et al. 2025
Sporosarcina	Picea	IAA production	Magosн et al. 2025
Lysinibacillus	Picea	Siderophore production, IAA production	Magosн et al. 2025
Psychrobacillus	Picea	Siderophore production, IAA production	Magosh et al. 2025
Herbaspirillum	Picea	ACC production, siderophore production, IAA production	Magosh et al. 2025
Herbicomiux	Picea	IAA production, ACC activity, cellulase activity.chitinase activity, glucanase activity	Puri et al. 2020
Pigmentiphaga	Picea	IAA production, ACC activity, cellulase activity.chitinase activity, glucanase activity	Puri et al. 2020
Chitinophaga	Pinus	IAA production, phosphate solubilization, chitinase activity	Flores-Nunez et al., 2018
Caballeronia	Picea	Phosphate solubilization, phytate hydrolyzation, IAA production, ACC activity, cellulase activity.chitinase activity, glucanase activity	Puri et al. 2020
PGP fungal genus	Tree species	PGP mechanisms	References
Umbelopsis	Picea	Phosphate solubilization, IAA production	Magosн et al. 2025
Tolypocladium	Picea	Phosphate solubilization, IAA production	Magosн et al. 2025
Lycoperdon	Picea	IAA production	Magosh et al. 2025

PGP fungal genus	Tree species	PGP mechanisms	References
Gymnopus	Picea	IAA production	Magosh et al. 2025
Podila	Picea	Phosphate solubilization, IAA production	Magosh et al. 2025
Mortierella	Picea	Phosphate solubilization, IAA production	Magosh et al. 2025
	Populus	GA production	Liao et al. 2019
Methylorubrum	Pinus	Auxin and ethylene production	Koskimäki et al. 2022
Pisolithus	Pinus	IBA and IAA production	Nіемі et al. 2002
Trichoderma	Pinus	Organic acids and siderophore production	Babu et al. 2014
Centraalbureau	Picea	Polyketide metabolites – biocontrol against herbivores	SUMARAH et al. 2008

For improving forest tree seedlings survival after outplanting it is crucial to gain additional knowledge about plant growth promoting potential of different microorganisms, not only from different forest tree species, but also from different environment. It is worth noticing that specific bacterial and fungal strains may promote growth only in certain tree species; even trees of the same species, but from different altitudes or regions, present differential responses to bacterial and fungal inoculation (Lucy et al. 2004). Therefore, it would also be important to isolate PGPMs

native strains from the specific plant rhizosphere to develop efficient biofertilizers to use in forestry. Inoculation of exogenous microorganisms not only influence the microbiome structures of rhizosphere soil of plants, but recruits many taxa attributed to plant developments (HAO et al. 2021). However, the interspecific interactions within the rhizosphere fungal microbiome are complex, and the synergistic relationships between PGPMs and "probiotic taxa" that drive rhizosphere reassembly and plant interactions remain poorly understood.

FUTURE CHALLENGES IN THE USE OF PGPMS IN FORESTRY

The use of PGPMs as inoculants is centuries old, and their use have been largely focussed in agriculture (SES-SITSCH & MITTER 2015). Development of new PGPMs inocula is based on a laboratory screening assays that rely on specific plant growth-promoting mechanisms, such as nitrogen fixation, ACC deaminase activity, auxin synthesis, calcium phosphate solubilization, etc. Currently efforts are more focused on the rhizomicrobiome as it has the greatest microbial diversity (SUBRA-MANIAN et al. 2016a, b). However, screening of pure culture isolates for those with plant growth promoting functions does not always result in isolates that promote plant growth under field conditions. At the same time, those which have minimal in vitro growth promoting functions may have alternate mechanisms to promote plant growth (Sessitsch & Mitter 2015).

Thereby plant growth experimentations should be combined with *in vitro* screening of promising isolates, with greenhouse experiments, which should be conducted under both optimal and stressful plant-growth conditions.

It is worth noticing, that microbial isolates from stress-prone habitats are more effective than those from stress-free environments in developing plant tolerance to abiotic stresses such as drought, salt, and heavy metals (Garcia et al. 2024, Lucy et al. 2004). This is particularly relevant in the context of sustainable environmental practices. Moreover, growth promoting effects are also highly variable depending on host plant genotype and selected microbial species or strain and can change with environmental conditions or plant development. It is necessary for researchers to carefully evaluate

the stress-adaptive characteristics of PGPMs before utilizing them in fields subjected to biotic or abiotic challenges. The kind of soil and the particular strains employed affect how effective PGPMs-mediated stress tolerance is (KOTIYAL & SHARMA 2024).

For efficient inoculation, colonisation and, consequently efficient performance of PGPMs under field condition, the appropriate strategy is of key importance. PGPMs are often used to inoculate plant material without an appropriate carrier or in quantities that do not allow for efficient rhizosphere colonization under field conditions, due to competition with resident soil microand macro-fauna (DANGI et al. 2017). It is necessary to develop strategies, which would allow PGPMs to gain advantage in colonization efficiency over other microorganisms, to elicit their positive effects on plant growth and development.

There is still a lack of knowledge of potential emergent properties of the microbial consortium effects on plant growth, as previous investigations mainly focused on traits of single strain (EJAZ et al. 2020; SIVASAKTHI et al. 2014; TIAN et al. 2023). Microorganisms rather function as communities, as in forest soils, bacterial and fungal strains interact symbiotically to enhance plant

growth by improving nutrient acquisition and stress tolerance. Mycorrhizal fungi extend the root system's absorptive capacity, facilitating the uptake of phosphorus, nitrogen, and micronutrients, while associated bacteria mobilize nutrients through mineralization and nitrogen fixation. These microbes also produce growth-promoting compounds and suppress soil-borne pathogens, creating a favorable rhizosphere environment. Such synergistic interactions increase plant vigor, resilience to environmental stress, and ultimately contribute to forest productivity and regeneration (SMITH & READ 2008; VAN DER HEIJDEN et al. 2008). However, most studies focusing on plant growth promoting properties of microorganisms have mainly used single or mixed bacterial strains, while there are only a few reports on the promotion of plant growth by a mixed consortium of bacterial and fungal strains.

To expand our knowledge in this sector, more investigation is required, especially fieldwork involving individual strains and a consortium of microorganisms with plant growth promoting ability, as it's possible that functional capacity of the microorganism's community or consortia is far beyond the sum of each individual due to beneficial interactions with each other.

CONCLUSIONS

The successful establishment of seedlings is a critical prerequisite for effective forest restoration, yet it remains strongly constrained by abiotic and biotic stresses intensified under global change. Plant growth-promoting microorganisms (PGPMs) represent a promising, sustainable strategy to enhance seedling survival, growth, and resilience, though their application in for-

estry is still limited. Current knowledge is largely restricted to bacterial strains, while the functional roles of fungal taxa and microbial consortia remain underexplored. Future research integrating strain selection, host specificity, and field-based validation is essential to advance PGPMs as reliable tools in silviculture and large-scale reforestation.

POVZETEK

Hitre spremembe rabe tal in naraščajoče klimatske spremembe, večajo pritisk na naravne ekosisteme in z tem povzročajo obsežno degradacijo gozdov. Med letoma 2015 in 2020 je bila povprečna stopnja krčenja gozdov ocenjena na 10 milijonov hektarjev letno, skupno pa je bilo od leta 1990 izgubljenih že več kot 420 milijonov hektarjev gozdnih površin. V luči podnebnih sprememb in upada biotske raznovrstnosti obnova gozdov postaja ključen ukrep za ublažitev globalnega segrevanja. Uspeh reforestacijskih prizadevanj je neposredno povezan z uspešno vzgojo in preživetjem sadik, kar pa je pogosto omejeno zaradi neustreznih metodologij ter povečane

izpostavljenosti stresnim abiotskim dejavnikom, kot so dolgotrajne suše, vodni deficit in osmotski stres. V primerjavi z odraslimi drevesi so sadike fiziološko ranljivejše zaradi plitvega koreninskega sistema, omejenih ogljikovih rezerv in hitrega zapiranja listnih rež, kar vodi v ogljično stradanje in oksidativni stres. Zato je že faza pridelave v drevesnicah kritična za dolgoročno uspešnost.

Ena izmed obetavnih strategij za povečanje kakovosti sadik je uporaba rastlinam koristnih mikroorganizmov (PGPMs). Ti vključujejo širok spekter bakterij in gliv, ki izboljšujejo rast ter zmanjšujejo vpliv abiotskih

in biotskih stresorjev. Med bakterijskimi rodovi so najpogosteje zastopani *Bacillus, Pseudomonas, Azospirillum, Rhizobium* in *Actinomycetes*, med glivnimi pa *Trichoderma, Penicillium* in arbuskularne ter ektomikorize. Bakterijski in glivni mehanizmi so predvsem v kmetijstvu že dobro raziskani in uveljavljeni, medtem ko omenjeni mehanizmi ostajajo v kontekstu gozdarstva bistveno manj poznani.

PGPMs pospešujejo rast preko več mehanizmov: (I) biosinteze sideroforov, ki povečujejo dostopnost železa in omejujejo rast patogenov; (II) sinteze fitohormonov, ki modulirajo razvoj in odzivnost rastlin; (III) izločanja ACC deaminaze, ki znižuje ravni stresnega etilena; (iv) tvorbe antagonističnih metabolitov (antibiotiki, HCN) ter (v) sproščanja hlapnih organskih spojin (VOCs), ki delujejo kot signalne molekule in modulatorji rasti. Posebno pomembna je sposobnost PGPMs, da uravnavajo hormonsko ravnovesje rastlin, kar se odraža v povečani odpornosti proti suši in boleznim ter v izboljšani presnovni učinkovitosti.

Uporaba PGPMs v drevesnicah je enostavna, stroškovno učinkovita in okolju prijazna metoda, ki lahko znatno izboljša vitalnost sadik in poveča njihovo preživetje na terenu. Kljub temu so obstoječe študije v gozdarstvu omejene predvsem na komercialno zanimive rodove (*Pinus*, *Quercus*, *Picea*, *Populus*), medtem ko so raziskave o drugih pomembnih vrstah, kot so *Fagus*, *Abies* in *Larix*, redke. Prav tako je potencial glivnih sevov v primerjavi z bakterijskimi v veliki meri neizkoriščen.

Prihodnji razvoj uporabe PGPMs v gozdarstvu zahteva: (1) izolacijo bakterijskih kot tudi glivnih sevov iz različnih habitatov in drevesnih vrst, (2) optimizacijo metod inokulacije, ki bodo omogočala uspešno kolonizacijo mikrobnih sevov, (3) dodatne raziskave o sinergijskih učinkih mikrobnih konzorcijev, kjer je funkcionalna kapaciteta skupnosti lahko večja od seštevka posameznih sevov; ter (4) validacijo rezultatov iz laboratorija in rastlinjakov ter prenos znanj v realne terenske pogoje.

Sklepno je mogoče poudariti, da imajo PGPMs velik potencial za izboljšanje uspešnosti sadnje, saj bi njihova uporaba lahko povečala odpornost sadik na stresne razmere, izboljšala njihovo preživetje po sajenju ter s tem pomembno prispevala k trajnostnemu gospodarjenju z gozdovi in blaženju posledic podnebnih sprememb.

ZAHVALE

Raziskava je bila financirana v okviru raziskovalnega programa P4-0107 Gozdna biologija, ekologija in tehnologija (ARIS) in ciljnega razvojnega projekta V4-2222 Ukrepi za ohranjanje biotske raznovrstnosti v gozdnih ekosistemih (ARIS in MKGP) ter Javne gozdarske službe JGS /GIS (MKGP).

REFERENCES

- AGAKE S I, Do Amaral F P, Yamada T, Sekimoto H, Stacey G, Yokoyama T & N Онкама-Онтѕи 2022: Plant growth-promoting effects of viable and dead spores of Bacillus pumilus TUAT1 on Setaria viridis. Microbes and environments 37: https://doi.org/10.1264/jsme2.ME21060
- Ahangar A, Dar G H, Hassan A A, & Z Bhat 2012: Growth response and nutrient uptake of blue pine (Pinus wallichiana) seedlings inoculated with rhizo- sphere microorganisms under temperate nursery conditions. Ann For Res 55: https://doi.org/10.15287/afr.2012.62
- BABU A G, SHEA P J, & B T OH 2014: Trichoderma sp. PDR1-7 promotes Pinus sylvestris reforestation of lead-contaminated mine tailing sites. Sci Total Environ 476: https://doi.org/10.1016/j.scitotenv.2013.12.119
- Bresson J, Varoquaux F, Bontpart T, Touraine B & D Vile 2013: The PGPR. Strain Phyllobacterium brassicacearum STM196 induces a reproductive delayand physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200: 10.1111/nph.12383
- CAO M, NARAYANAN M, SHI X, CHEN X, LI Z & Y MA 2023: Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation. Environ Res 217: 10.1016/j.envres.2022.114924.
- CASTILLO-ARGÜERO S, MARTÍNEZ-OREA Y & BARAJAS-GUZMÁN 2014: Establecimiento de tres especies arbóreas en la cuenca del río Magdalena, México. Bot Sci 92: 10.17129/botsci.100
- CHAZDON R L & M R GUARIGUATA 2018: Decision support tools for forest landscape restoration: Current status and future outlook. CIFOR

- CLOSE D C, BEADLE C L & P H Brown 2005: The physiological basis of containerised tree seedling 'transplant shock': a review. Aust For 68: https://doi.org/10.1080/00049158.2005.10674954
- COMPANT S, CLÉMENT C & A SESSITSCH 2010: Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol and Biochem 42: 10.1016/j.soilbio.2009.11.024
- CUTLER S R, RODRIGUEZ P L, FINKELSTEIN R R & S R ABRAMS 2010: Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61: https://doi.org/10.1146/annurev-arplant-042809-112122
- DANGI S R, TIRADO-CORBALÁ R, GERIK J & B D HANSON: 2017: Effect of long-term continuous fumigation on soil microbial communities. Agronomy 7: https://doi.org/10.3390/agronomy7020037.
- DEL CARMEN OROZCO-MOSQUEDA M, GLICK B R & G SANTOYO 2020: ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiol Res 235: https://doi.org/10.1016/j.micres.2020.126439
- Domingo G, Vannini C, Marsoni M, Costantini E, Bracale M & A di Iorio 2023: A multifaceted approach to reveal the very-fine root's response of Fagus sylvatica seedlings to different drought intensities. Physiol Plant 175:: 10.1111/ppl.13934.
- EJAZ S, BATOOL S, ANJUM M A, NAZ S, QAYYUM M F, NAQQASH T, ... & S ALI 2020: Effects of inoculation of root-associative Azospirillum and Agrobacterium strains on growth, yield and quality of pea (Pisum sativum L.) grown under different nitrogen and phosphorus regimes. Sci Hortic, 270: https://doi.org/10.1016/j.scienta.2020.109401
- EL-MARAGHY S S, TOHAMY A T & K A HUSSEIN 2021: Plant protection properties of the Plant Growth-Promoting Fungi (PGPF): Mechanisms and potentiality. Curr Res Environ Appl Mycol 11: 10.5943/cream/11/1/29
- FADIJI A E, SANTOYO G, YADAV A N, BABALOLA & O OLUBUKOLA 2022: Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Front Microbiol 13: 10.3389/fmicb.2022.962427
- FLORES-NUNEZ V M, AMORA-LAZCANO E, RODRÍGUEZ-DORANTES A, CRUZ-MAYA J A & J JAN-ROBLERO 2018: Comparison of plant growth-promoting rhizobacteria in a pine forest soil and an agricultural soil. Soil Res 56: 10.1071/SR17227
- GARCÍA J A L, DOMENECH J, SANTAMARÍA C, CAMACHO M, DAZA A, & F. J. G. MAÑERO 2004: Growth of forest plants (pine and holm-oak) inoculated with rhizobacteria: relationship with microbial community structure and biological activity of its rhizosphere. Environ and Exper Bot 52: https://doi.org/10.1016/j.envexpbot.2004.02.003
- GARCIA-LEMOS A M, GOBBI A, NICOLAISEN M H, HANSEN L H, ROITSCH T, VEIERSKOV B & O NYBROE 2020: Under the christmas tree: Belowground bacterial associations with Abies Nordmanniana across production systems and plant development. Front in Microbiol 11, https://doi.org/10.3389/fmicb.2020.00198
- GHORBANI S & B HARIGHI 2018: Characterization of endophytic bacteria with plant growth promotion and biological control potential isolated from walnut trees. For Pathol, 48: https://doi.org/10.1111/efp.12403
- GOKE A & P H MARTIN 2022: Poor acclimation to experimental field drought in subalpine forest tree seedlings. AoB PLANTS 14: 10.1093/aobpla/plab077
- HANAKA A, OZIMEK E, RESZCZYŃSKA E, JAROSZUK-ŚCISEŁ J & M STOLARZ 2021: Plant tolerance to drought stress in the presence of supporting bacteria and fungi: An efficient strategy in horticulture. *Horticulturae*, 7: https://doi.org/10.3390/horticulturae7100390
- HAO L, ZHANG Z, HAO B, DIAO F, ZHANG J, BAO Z & W Guo 2021: Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. Ecotoxicol Environ Saf 212: https://doi.org/10.1016/j.ecoenv.2021.111996
- HARTMANN H, BASTOS A, DAS J A, ESQUIVEL-MUELBERT A, HAMMOND W M, MARTINEZ-VILILTA J, MCDOWEL N G, POWERS J S, PUGH T A M, RUTHROF K X & C D ALLEN 2022: Climate Change Risks to Global Forest Health: Emergence of Unexpected Events of Elevated Tree Mortality Worldwide. Ann Rev of Plant Biol 73: 10.1146/annurev-arplant-102820-012804.
- HERMOSA R, VITERBO A, CHET I & E MONTE E 2012: Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158: 10.1099/mic.0.052274-0
- HEYDARI M, HAJINIA S, JAFARIAN N, KARAMIAN M, MOSA Z, ASGHARZADEH S, REZAEI N, GUIDI L, VALKÓ O & B PRÉVOSTO 2023: Synergistic use of biochar and the plant growth-promoting rhizobacteria in mitigating drought stress on oak (Quercus brantii Lindl.) seedlings. For Ecol and Man 531: https://doi.org/10.1016/j.foreco.2023.120793

- HOSSAIN M M, SULTANA F, KUBOTA M & M HYAKUMACHI 2008: Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting-fungus Penicillium sp. GP16-2 and its cell free filtrate. Plant and Soil, 304: 10.1007/s11104-008-9542-3
- IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team: Pachauri R.K., Meyer L.A. (eds.). Geneva
- KHATOON Z, HUANG S, FAROOQ M A, SANTOYO G, RAFIQUE M, JAVED S & B GUL 2022: Role of plant growth-promoting bacteria (PGPB) in abiotic stress management. Mitigation of Plant Abiotic Stress by Microorganisms: https://doi.org/10.1016/B978-0-323-90568-8.00012-2
- Koskimäki J J, Pohjanen J, Kvist J, Fester T, Härtig C, Podolich O, Edesi J, Häggman H & A M Pirttilä 2022: The meristem-associated endosymbiont Methylorubrum extorquens DSM13060 reprograms development and stress responses of pine seedlings. Tree Physiol 42: 10.1093/treephys/tpab102
- KOTIYAL P B & S K SHARMA 2024: Alleviating abiotic and abiotic stress, enhancing soil fertility, and growth of forest tree species PGPR: A Review. Asian J Biol 20: 10.9734/ajob/2024/v20i7419
- LE H D, SMITH C, HERBOHN J & S HARRISON 2012: More than just trees: Assessing reforestation success in tropical developing countries. J Rural Stud 28: https://doi.org/10.1016/j.jrurstud.2011.07.006
- LI Y, WANG Z, LIU X, SONG Z, LI R, SAHO C & Y YIN 2016: Siderophore Biosynthesis but Not Reductive Iron Assimilation Is Essential for the Dimorphic Fungus Nomuraea rileyi Conidiation, Dimorphism Transition, Resistance to Oxidative Stress, Pigmented Microsclerotium Formation, and Virulence. Front Microbiol 7: https://doi.org/10.3389/fmicb.2016.00931
- LI Z, ZHOU H, PENG Y, ZHANG X, MA X, HUANG L & Y YAN 2015: Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones. Plant Growth Regul 76: 10.1007/s10725-014-9978-9
- LIAO H L, BONITO G, ROJAS J A, HAMEED K, WU S, SCHADT C W, LABBE J, TUSKAN G A, MARTIN F, GRIGORIEV I V & R VILGALYS 2019: Fungal endophytes of Populus trichocarpa alter host phenotype, gene expression, and rhizobiome composition. MPI 32: https://doi.org/10.1094/MPMI-05-18-0133-R
- Lucy M, Reed E & B R Glick 2004: Applications of free-living plant growth-promoting rhizobacteria. *Antonie Van Leeuwenhoek* 86: 0.1023/B:ANTO.0000024903.10757.6e
- MAGOSCH S, BARRERA C, BÖLZ A, PRITSCH K, ROTHBALLER M & J P BENZ 2025: Improving Seedling Survival for Forest Restorations: A Novel Screening Method to Identify Microbial Allies Against Drought Stress. *bioRxiv*, 2025-04: https://doi.org/10.1101/2025.04.24.650507
- MEDIAVILLA S & A ESCUDERO 2003: Stomatal responses to drought at a Mediterranean site: a comparative study of co-occurring woody species differing in leaf longevity. Tree PHYSIOL 23: 10.1093/treephys/23.14.987
- MORENO-VALENCIA F D, PLASCENCIA-ESPINOSA M Á, MORALES-GARCÍA Y E & J MUÑOZ-ROJAS 2024: Selection and Effect of Plant Growth-Promoting Bacteria on Pine Seedlings (Pinus montezumae *and Pinus* patula). Life, 14: https://doi.org/10.3390/life14101320
- NADELL C D, Drescher K & K R Foster 2016: Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol 14: https://doi.org/10.1038/nrmicro.2016.84
- NAJAFI ZILAIE M, MOSLEH ARANI A, ETESAMI H & M DINARVAND 2022: Improved salinity and dust stress tolerance in the desert halophyte Haloxylon aphyllum by halotolerant plant growth-promoting rhizobacteria. Front Plant Sci 13: https://doi.org/10.3389/fpls.2022.948260
- NAZAROV A, CHETVERIKOV S, CHETVERIKOVA D, TUKTAROVA I, IVANOV R, URAZGILDIN R, GARANKOV I & G KUDO-YAROVA 2023: Microbial preparations combined with humic substances improve the quality of tree planting material needed for reforestation to increase carbon sequestration. Sustainability 15: https://doi.org/10.3390/su15097709
- NIEHUS R, PICOT A, OLIVEIRA N M, MITRI S & K R FOSTER 2017: The evolution of siderophore production as a competitive trait. Evolution, 71: 10.1111/evo.13230
- NIEMI K, VUORINEN T & A ERNSTSEN 2002: Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyl cuttings in vitro. Tree Physiol 22: 10.1093/treephys/22.17.1231
- Ou T, Zhang M, Gao H, Wang F, Xu W, Liu X., Wang L, Wang R & J Xie 2023: Study on the potential for stimulating mulberry growth and drought tolerance of plant growth-promoting fungi. Int J Mol Sci 24: https://doi.org/10.3390/ijms24044090

- PATHAK D, LONE R & K K KOUL 2017: Arbuscular Mycorrhizal fungi (AMF) and plant growth-promoting Rhizobacteria (PGPR) Association in Potato (Solanum tuberosum L.: A brief Review. *Probiotics and plant health*: 10.1007/978-981-10-3473-2 18
- POVEDA J, 2021: Beneficial effects of microbial volatile organic compounds (MVOCs) in plants. *Appl Soil Ecol 168*: https://doi.org/10.1016/j.apsoil.2021.104118
- Puri A, Padda K P & C P Chanway 2020: In vitro and in vivo analyses of plant-growth-promoting potential of bacteria naturally associated with spruce trees growing on nutrient-poor soils. Appl Soil Ecol 149: https://doi.org/10.1016/j.apsoil.2020.103538
- REIS F, PEREIRA A J, TAVARES R M, BAPTISTA P & T LINO-NETO 2021: Cork oak forests soil bacteria: potential for sustainable agroforest production. Microorganisms 9: https://doi.org/10.3390/microorganisms9091973
- SALEEM M, ARSHAD M, HUSSAIN S & A S BHATTI 2007: Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34: 10.1007/s10295-007-0240-6
- SÁNCHEZ-CRUZ N D, MEZA-CONTRERAS J C, ESCALANTE F M, MACÍAS-RODRÍGUEZ M E, SALCEDO-PEREZ E & Y GONZÁLEZ-GARCÍA 2020: Phosphate solubilization and indole-like compounds production by bacteria isolated from forest soil with plant growth promoting activity on pine seedlings. Geomicrobiology 37: 10.1080/01490451.2020.1797945
- SANTANA E B, MARQUES E L S & J C T DIAS 2016: Effects of phosphate-solubilizing bacteria, native microorganisms, and rock dust on Jatropha curcas L. growth. Genet Mol Res 15: 10.4238/gmr.15048729
- SÃO JOSÉ J F B, VOLPIANO C G, VARGAS L K, HERNANDES M A S, LISBOA B B, SCHLINDWEIN G, BENEDUZI A, LONGONI L S & J A T SAMPAIO 2019: Influence of hot water on breaking dormancy, incubation temperature and rhizobial inoculation on germination of *Acacia mearnsii seeds*. *Aust. For.* 82: 10.1080/00049158.2019.1636350
- Sessitsch A & B Mitter 2015: 21st century agriculture: integration of plant microbiomes for improved crop production and food security. Microb Biotech 8: https://doi.org/10.1111/1751-7915.12180
- SILAMBARASAN S, LOGESWARI P, CORNEJO P & V R KANNAN 2019: Evaluation of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions. *Int J Biol Macromol 121*: https://doi.org/10.1016/j.ijbiomac.2018.10.016
- SIVASAKTHI S, USHARANI G & P SARANRAJ 2014: Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. Afr J Agric Res 9: 10.5897/AJAR2013.7914
- SMITH S. E. & READ D. J. 2008: Mycorrhizal Symbiosis (3rd ed.). Academic Press.
- Song Q, Song X, Deng X, Luo J, Wang J, Min K & R Song 2021: Effects of plant growth promoting Rhizobacteria microbial on the growth, rhizosphere soil properties, and bacterial community of Pinus sylvestris var. mongolica seedlings. Scand J Forest Res 36: https://doi.org/10.1080/02827581.2021.1917649
- STANTURF J A, KLEINE M, MANSOURIAN S, PARROTTA J, MADSEN P, KANT P, BURN J & BOLTE 2019: Implementing forest landscape restoration under the Bonn Challenge: A systematic approach. Ann For Sci 76: https://doi.org/10.1007/s13595-019-0833-z
- Stanturf J A, Palik B J, Williams M I, Dumroese R K & P Madsen 2014: Forest restoration paradigms. J. Sustain. Forest 33: https://doi.org/10.1080/10549811.2014.884004
- Su P, Tan X, Li C, Zhang D, Cheng J, Zhang S, Zhou X, Yan Q, Peng J, Zhang Z, Liu Y & X Lu 2017: Photosynthetic bacterium Rhodopseudomonas palustris GJ-22 induces systemic resistance against viruses. Microb Biotechnol 10: 10.1111/1751-7915.12704
- SUBRAMANIAN S, RICCI E, SOULEIMANOV A, & D L SMITH 2016a: A proteomic approach to lipochitooligosaccharide and thuricin 17 effects on soybean germination unstressed and salt stress. *PLoS One* 11: 10.1371/journal. pone.0160660
- Subramanian S, Souleimanov A, & D L Smith 2016b: Proteomic studies on the effects of lipochitooligosaccharide and thuricin 17 under unstressed and salt stressed conditions in *Arabidopsis thaliana*. Front Plant Sci 7: 10.3389/fpls.2016.01314
- Sumarah M W, Adams G W, Berghout J, Slack G J, Wilson A M & J D Miller 2008: Spread and persistence of a rugulosin-producing endophyte in Picea glauca seedlings. Mycological Research 112: https://doi.org/10.1016/j.mycres.2008.01.007
- Tashi-Oshnoei F, Harighi B & J Abdollahzadeh 2017: Isolation and identification of endophytic bacteria with plant growth promoting and biocontrol potential from oak trees. Forest Pathology 47: https://doi.org/10.1111/efp.12360

- TIAN Y, LIU Y, UWAREMWE C, ZHAO X, YUE L, ZHOU Q, WANG Y, PHAN TRAM L.S, LI W, CHEN G, SHA Y &R WANG 2023: Characterization of three new plant growth-promoting microbes and effects of the interkingdom interactions on plant growth and disease prevention. Plant Cell Reports 42: 10.1007/s00299-023-03060-3
- VAN DER HEIJDEN M. G. A., BARDGETT R. D., VAN STRAALEN N. M. 2008: The unseen majority: soil microbes as drivers of plant diversity and productivity. Ecol Lett, 11: https://doi.org/10.1111/j.1461-0248.2007.01139.x
- ZHANG Y, Xu J, L Ru, GE Y, Li Y & R Li 2023, Plants' Response to Abiotic Stress: Mechanisms and Strategies. Int J Mol Sci 24: 10.3390/ijms241310915