Mechanical characteristics of buckwheat noodles made with blue-green alga, *ishi-kurage* (*Nostoc commune* Vauch.)

Yuya ASAMI¹, Mitsuki ZENNO¹, Keina MIKAMI¹, Hikaru OSUGA¹, Rui SETOYAMA¹, Kenta SAKANASHI¹, Tesshu TAMAI¹, Tsuyoshi FURUMOTO¹ and Kiyokazu IKEDA²

¹ Faculty of Agriculture, Ryukoku University, Seta oe-cho, Otsu, 520-2194, Japan, yuya_asami@agr.ryukoku.ac.jp
² Faculty of Nutrition, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan, nk102009@nutr.kobegakuin.ac.jp
* Corresponding author:
  nk102009@nutr.kobegakuin.ac.jp, Fax +81 78 974 5689

Received: July 27, 2020; accepted September 7, 2020.
Keywords: common buckwheat, mechanical characteristics, noodles, *Nostoc commune*

ABSTRACT
The present study was conducted to clarify the effect of a kind of blue-green algae, i.e., *ishi-kurage*, on the mechanical characteristics of buckwheat noodles. Mechanical analysis of buckwheat noodles with *ishi-kurage* showed that incorporation of *ishi-kurage* into buckwheat noodles enhanced breaking stress and energy. Sensory evaluation with human panels showed that buckwheat noodles with *ishi-kurage* were more preferred when compared with noodles without *ishi-kurage*. On the other hand, incorporation of *ishi-kurage* into buckwheat noodles enhanced decreased solubility of the albumin plus globulin fraction. The present study finding suggests that the endogenous protein may be an important factor responsible for the mechanical characteristic of buckwheat noodles with *ishi-kurage*. 
INTRODUCTION

Buckwheat (Fagopyrum spp.) is an important crop in some regions of the world (Kreft et al., 2003; Ikeda, 2002). Buckwheat flour contains high levels of essential nutrients such as protein (Ikeda et al., 1991) and minerals (Ikeda and Yamashita, 1994). Thus buckwheat flour is an important dietary source of these essential nutrients. On the other hand, components in buckwheat flour have still not been well characterized from the viewpoints of both nutrition and food-functionality. Careful characterization of the components is needed to better understand their nutritional and food-functional properties.

There is a variety of buckwheat foods, such as bread, pancake, crepe, galettes, pasta, blini, kasha etc., around the world (Ikeda, 2002). In view of their processing and cooking, increasing attention has been paid to the palatability and acceptability of buckwheat products. Clarifying the mechanical characteristics of buckwheat products, including noodles and pasta, is a subject of great interest. Noodles made from buckwheat flour-water dough are popular in some regions including Japan (Ikeda, 2002). In Japan, buckwheat noodles are a popular, traditional food. Traditional processing methods for buckwheat noodles have been long recorded in Japanese history for approximately four hundred years or more (Zen-men-kyo, 2014). As buckwheat flour has low cohesiveness, dough-binders, such as wheat flour, egg, seaweed, Japanese yam flour, are often added in preparing buckwheat noodles (Zen-men-kyo, 2014). A variety of buckwheat noodles with various dough-binders has been traditionally available in Japan. We reported mechanical effects by addition of various dough-binders to buckwheat noodles (Ikeda et al., 2005; Asami et al., 2019). However, further systematic analysis is needed to understand the exact mechanical effects of various dough-binders to buckwheat products.

Japanese people prefer to eat edible algae including marine algae. As Japan is surrounded by the sea on all sides, there is a variety of edible marine algae in Japan. In view of their color, algae are classified into four groups, i.e., brown algae, red algae, blue green algae, and indigo algae. In relation to buckwheat processing, various edible marine algae are traditionally utilized as dough-binders (Zen-men-kyo, 2014). They include buckwheat noodles with red algae, called hegi-soba in Niigata, the central region of Japan, and soba with agar-agar in several regions (Zen-men-kyo, 2014). These buckwheat noodles with red algae or agar-agar have a unique preferred texture.

In Japan, there is a kind of blue-green algae, i.e., Nostoc commune Vauch., called ishi-kurage in Japanese (Fig.1). Ishi-kurage belongs to a cyanobacterium phylum and a Nostoc genus (Itoh, 2015). Ishi-kurage grows naturally on some conditions such as a surface of soil, but is fragile to drying (Fig. 1-(A)) and wetting, i.e., this algae becomes swollen (Fig. 1-(B)) when wetting (Itoh, 2015). In Japan, ishi-kurage is traditionally utilized as an edible algae in some limited areas such as Ane-gawa River in Shiga Prefecture, Western region of Japan, and Miyako-jima Island in Okinawa Prefecture. Ishi-kurage contains functional components such as effect of reducing serum and liver cholesterol concentrations that may exhibit beneficial effects to humans (Hori at al., 1990; Ishibashi et al., 1994; Itoh, 2015). Therefore, the nutritional value as a functional food of ishi-kurage has been increasing in recent years. From the nutritional importance of buckwheat and ishi-kurage, it is an interesting subject to utilize ishi-kurage as their dough-binder to buckwheat noodles. There are up to now no buckwheat noodles prepared with ishi-kurage. If buckwheat noodles with high palatability can be prepared with ishi-kurage, much attention to such buckwheat noodles will be attracted.

This study aimed to prepare buckwheat noodles prepared with ishi-kurage and to clarify mechanical characteristics of buckwheat noodles with added ishi-kurage.

MATERIALS AND METHODS

Materials

Mechanical characteristics of buckwheat noodles were analyzed in the present study. Two mechanical analysis, I and II, were conducted in this study.

Mechanical analysis I was conducted to clarify the effects of the ishi-kurage on the buckwheat noodles. Buckwheat flour (Fagopyrum esculentum Moench, var. Kitawase-soba), which was harvested in Hokkaido (in 2018), was used in this research. Buckwheat flour was kindly provided prepared from Terao Milling Co. (Hyogo, Japan) and stored at -80°C until use. Ground blue-green algae, i.e., ishi-kurage in Japanese (Nostoc commune Vauch.) (Fig. 1-(C)) used in this study was a commercial product (Micro Algae Co., Gifu, Japan).

Mechanical analysis II, buckwheat noodles with ishi-kurage as a commercial dried noodle product as were prototyped and their mechanical characteristics were measured. Production of buckwheat noodles with ishi-kurage
was outsourced to the Tanaka Seimenjyo Co. Ltd., Japan. Buckwheat flour used was that harvested in Japan, and wheat flour used was that harvested in the USA, Canada, and Australia. The same ishi-kurage sample, as used in mechanical analysis I, was used in mechanical analysis II.

**Mechanical measurements**

**Mechanical analysis I:**

Mechanical characteristics of buckwheat noodles were evaluated by breaking analysis. Prior to mechanical analysis, buckwheat flour, which had been stored at -80°C, was placed in a desiccator at room temperature until the flour exhibited a constant moisture content. The moisture of the flour was measured with a moisture analyzer (ML-50, A&D Co. Ltd., Japan). *Ishi-kurage* was boiled, and then sticky gel of *ishi-kurage* obtained by boiling was added to buckwheat flour. The buckwheat dough was prepared just prior to mechanical analysis to have a moisture content of about 42% (w/w) by adding an appropriate amount of distilled water. Then buckwheat noodles were made from the buckwheat dough using a hand-made pasta machine (SP-150, Imperta Co., Torino, Italy).

![Fig. 1](A), (B), (C)

*Fig. 1*

*Ishi-kurage.*

(A), *ishi-kurage* in the dry state; (B), *ishi-kurage* in the wet state; and (C), ground *ishi-kurage.*
Italy). The buckwheat noodles obtained were subjected to mechanical analysis. Before the mechanical analysis, buckwheat noodles prepared were heated in boiling water for a period of 150 sec and subsequently were cooled for a period of 150 sec at 4°C. Immediately after cooling, mechanical measurements of the noodles were performed. Breaking analysis of buckwheat noodles was performed with Rheoner RE2-3305C (Yamaden Co. Ltd., Japan). Measurements of breaking analysis were performed with a load cell of 200N and measurement speed of 0.50 mm/sec. A wedge-style plunger (No.49: W 13mm, D 30mm, H 25mm) was used in measurements with the Rheoner RE2-3305C. Mechanical measurements were replicated twenty times for each sample.

**Mechanical analysis II:**

Noodles were prepared with a buckwheat flour-to-wheat flour ratio of 1:4. Two types of buckwheat noodles were prepared. Two types of buckwheat noodles were prepared with or without addition of *ishi-kurage*. In the case of buckwheat noodles with added *ishi-kurage*, the amount of *ishi-kurage* added was 2% of the flour weight. Mechanical analysis of the buckwheat noodles was measured in the same as in mechanical analysis I, except that the noodle boiling time was 5 minutes. Figure 2 shows buckwheat noodles with and without addition of *ishi-kurage*.

**Sensory evaluation**

Sensory evaluation was conducted by a scoring-scale method (Toda, 1994) with volunteer panels (n=26). The evaluation criteria which was selected consisted of six items, i.e., overall evaluation, hardness, springiness, easiness to bite through, smoothness and color. The scoring scales consisted of seven points: +3, the most prefer; +2, moderately prefer; +1, slightly prefer; 0, medium prefer; -1, slightly less prefer; -2, moderately less prefer; and -3, the least prefer. The buckwheat noodle samples in soy-sauce soup were presented to the panels immediately after cooking and were immediately evaluated. This study was implemented after the permission from the Ryukoku University Ethics Committee. The panels in this study gave their consent regarding the purpose of the study, study methodology and publication of the study results.

**Protein determination**

For chemical analysis of the combined fractions of buckwheat albumin plus globulin in the heated noodle samples which had been subjected to the mechanical measurements, the noodle samples were lyophilized and

---

**Fig. 2**
A prototype of commercial product of buckwheat noodles with added *ishi-kurage*.
(A), non added *ishi-kurage* and (B), added *ishi-kurage*. 

---
then ground into flour. The flours obtained were extracted with a ten-fold (v/w) volume of 0.2M NaCl for 1hr at 4°C. After the extraction, the suspensions were centrifuged at 17,000 X g for 20 min. Protein concentration was determined using the Bradford method (Bradford, 1976) with bovine serum albumin as a standard protein.

**Statistical analysis**

Statistical analysis was conducted using a personal computer with the program Excel (Microsoft Co., USA), Ekuseru-Toukei (Social Survey Research Information Co., Japan) and SPSS Ver.23.0 (IBM, USA).

**RESULTS AND DISCUSSION**

**Mechanical analysis I: mechanical characteristics of buckwheat noodles made with ishi-kurage**

Figure 3 shows breaking characteristics of buckwheat noodles prepared without or with ishi-kurage. As amounts of ishi-kurage added into buckwheat noodles increased, breaking stress and energy of the buckwheat noodles concomitantly increased (Fig. 3 (A and B)). A significant high breaking stress and breaking energy was found with buckwheat noodles with a concentration of ishi-kurage with 1.8% or over as compared with buckwheat noodles without ishi-kurage (P<0.05) (Fig. 3 (A and B)). These findings showed unique mastication buckwheat noodles prepared with ishi-kurage noodles.

**Mechanical analysis II: mechanical characteristics of prototype of buckwheat product with ishi-kurage**

Figure 4 shows the comparison of breaking characteristics between prototype noodles made without and with ishi-kurage. There was a significant (P<0.05) difference in breaking stress and breaking energy between the two different buckwheat noodles examined (Fig. 4). The effect of addition of ishi-kurage could be shown as in the results of mechanical analysis I (Fig. 3).

![Fig. 3](image)

*Fig. 3*

Breaking characteristics of buckwheat noodles made with ishi-kurage.

(A), breaking stress; and (B), breaking energy. Vertical bars in the figure show the standard deviations. Values within the same row that are not followed by the same letter are significantly different at P<0.05.
Sensory evaluation of buckwheat noodles with *ishi-kurage*

Figure 5 shows the comparison of sensory evaluation between noodles made without and with *ishi-kurage*. Significant differences (*P*<0.05) between two types of buckwheat noodles were found for springiness, smoothness and color (Fig. 5), respectively. Springiness and color of buckwheat noodles with *ishi-kurage* were significantly higher than without *ishi-kurage* noodles (Fig. 5). On the other hand, smoothness of buckwheat noodles with *ishi-kurage* was significantly lower than without *ishi-kurage* noodles (Fig. 5). The present findings (Figs. 3, 4 and 5) suggest that incorporating *ishi-kurage* as a dough-improver into buckwheat noodles can produce buckwheat noodles with stable masticatory characteristics together with high palatability and acceptability.

Protein compositions of buckwheat noodles made with *ishi-kurage*

Figure 6 shows the NaCl-soluble protein content of buckwheat noodles made with *ishi-kurage*, i.e., noodles

---

Fig. 4
Comparison of breaking characteristics between prototype noodles made without and with *ishi-kurage*. (A), breaking stress; and (B), breaking energy. Vertical bars in the figure show the standard deviations. Significant difference between the two buckwheat noodles: *P*<0.05, **P*<0.01.

Fig. 5
Sensory evaluation of prototype noodles made without and with *ishi-kurage*. Significant difference between the two buckwheat noodles: *P*<0.05, **P*<0.01.
evaluated in mechanical analysis I (Fig. 3). The NaCl-soluble protein exhibits the combined fraction of the two major buckwheat proteins, i.e., albumin plus globulin (Ikeda, 2002), designated the AG fraction below. Changes by the addition of the *ishi-kurage* in solubility of the AG fraction were found (Fig. 6). Addition of *ishi-kurage* reduced the solubility of the AG fraction in buckwheat noodles as the *ishi-kurage* added into buckwheat noodles increased (Fig. 6). *Ishi-kurage* is reported to contain high levels of dietary fiber such as pectin (Hori et al., 1992). This observed phenomenon (Fig. 6) suggests a possibility indicating that buckwheat protein may be precipitated arisen by addition of dietary fiber present in *ishi-kurage*, as we have suggested in our previous findings also suggested that buckwheat protein may be precipitated by addition of some seaweeds (Asami et al., 2019). Our studies suggest that precipitation, if any, of buckwheat proteins in buckwheat products may lead to large alterations in the mechanical properties of buckwheat proteins (Ikeda, et al., 1999; Asami et al., 2008). Actually, statistical analysis showed that the AG fraction content (Fig. 6) negatively correlated to their observed breaking stress (Fig. 3 A) with $r = -0.869$ ($P<0.05$), breaking energy (Fig. 3 B) with $r = -0.865$ ($P<0.05$). These statistical findings suggest that the proteins of AG fraction (Fig. 6) may be associated with the observed mechanical characteristics (Fig. 3) of buckwheat noodles made with *ishi-kurage*.

Finally, the present study shows clear alterations in mechanical characteristics of buckwheat noodles made with *ishi-kurage*. The present study suggests that changes in the protein of AG fraction in buckwheat noodles with *ishi-kurage* may be an important factor affecting the mechanical characteristics of buckwheat noodles, although the exact mechanism remains uncertain. In this study, *ishi-kurage*, which was reported to have high functionality (Hori at al., 1990; Ishibashi et al., 1994; Itoh, 2015), was added to buckwheat noodles. The findings of the present study will hopefully stimulate further development of new buckwheat products.

---

**Fig. 6**

NaCl-soluble protein content of buckwheat noodles made with *ishi-kurage*. Vertical bars in the figure show the standard deviations.
ACKNOWLEDGMENT
This work was supported by the Research Institute for Food and Agriculture of Ryukoku University, Japan. The present author is sincerely grateful to many persons of the Faculty of Agriculture, Ryukoku University for their kind cooperation in the sensory evaluation experiments. The present author is sincerely grateful to Ms. Kazumi Hashimoto, Ryukoku University, for support in the experiment.

REFERENCES

IZVLEČEK